
1

The Challenge of Quality in
Multi Tier Multi Language Multi-Tier, Multi-Language

Applications

Dr. Bill Curtis
SVP & Chief Scientist

CAST Software
© CAST 2008

1 Day’s Offerings from CIO Online

2
© CAST 2008

2

Why Do New Features Take So Long?
Unusable or setback to progress

Worse than in-house results

46%46%What results are you getting What results are you getting

Developing the changes

Understanding the code

Same as in-house resultsBetter than in-house results

14%14%
8%8% 26%26%Source: Outsourcer Quality Survey Results

Software Development Magazine March 2006

from your outsourcers? from your outsourcers?

3
© CAST 2008

Testing the changes Documenting the changes

Understanding the code

19%19%
6%6%

47%47%

28%28%
Source: Software Quality, Producing

Practical and Consistent Software
Mordechai Ben-Manachem

How do maintenance How do maintenance
staff spend their time? staff spend their time?

Business Agility Is Limited by App Quality

Ossified, contorted,
complex legacy code

Harmfully complex
Hard to change

Speed in responding to
the market depends on
the ease of modifying
business applications

Hard to change
Easy to hack into
Costly to maintain

4
© CAST 2008

Well-engineered,
high-quality code

Secure and robust
Easy to change
Cheap to maintain
Faster to build

3

Application Software Quality Iceberg

TE
ST

QUALITYQUALITY
SYMPTOMSSYMPTOMS

poor response timedegraded performance

defects outages overruns

excessive costs

Y
 E

VA
LU

AT
IO

N
SYMPTOMSSYMPTOMS

QUALITYQUALITY
CHARACTERISTICSCHARACTERISTICS

program structureprogram structurecomplexitycomplexity

coding practicescoding practices

couplingcoupling testabilitytestability

reusabilityreusability
cohesioncohesion

securitysecurity

5
© CAST 2008

Q
U

AL
IT

Y

maintainabilitymaintainability

understandabilityunderstandability

flexibilityflexibility
architecturearchitecture

cohesioncohesion

robustnessrobustness interoperabilityinteroperability
scalabilityscalability

Steve McConell (1993), Code Complete.

Godot’s Gotta Be in There Somewhere

Product
Catalogue

? hosts
? th d

Resource pools?
Connection pools?
Error handling?
Timeouts?

Retail
Website

? hosts
?K threads

? threads

Order Entry
Application

? hosts
? threads

Credit Card
Application

? hosts
? threads

Timeouts?

6
© CAST 2008

Shipping
Application

? hosts
? threads

Express Service
Application

? hosts
? threads

4

Siloed Developer Skills

JSP / JSTL / JSF
ERP

Enterprise
Applications

Connectors Presentation
Tier

STRUTS - MVC

Java Services

Sp
rin

g

Webmethods

Web
Services

CICS
Connector

Legacy
Applications

Business
Logic
Tier

Data TierCOBOL

7
© CAST 2008

Much of the complexity and risk of applications occurs at the interface Much of the complexity and risk of applications occurs at the interface
between technologies between technologies —— beyond the comprehension of beyond the comprehension of siloedsiloed skillsskills

Database
Batches C
Pro C

EJB – Hibernate - Ibatis
Data Tier

Databases
Files

Batches

Dispersed Development

8
© CAST 2008

5

The Devil Is in the Interface

PresentaPresenta--
tiontion TierTier

Web / Client Server Applications
ASP/JSP/VB/.NET

Web

MiddlewareEnterprise Applications

Business Business
Logic Logic
TierTier

Application Logic
Java, C++, …
Frameworks Struts MVC, Spring

Legacy Applications

CICS Monitor (Cobol)
Tuxedo Monitor (C)

Web
Services

CICS
Connector

9
© CAST 2008

DataData
TierTier

DatabasesDatabasesFilesFiles

COBOLCOBOL
Batch

Shell Scripts

Database

Data Management Layer
EJB – Hibernate - Ibatis

Internal Quality Is Often Overlooked

The degree to which a product
meets its specified requirementsQuality

ProblemProblem⎯Customers struggle to state functional requirements.
They do not understand non-functional requirements.

“…a failure to satisfy a non-functional
requirement can be critical, even

t t hi f ti l i t

10
© CAST 2008

catastrophic…non-functional requirements
are sometimes difficult to verify. We cannot
write a test case to verify a system’s
reliability…The ability to associate code to
non-functional properties can be a powerful
weapon in a software engineer’s arsenal.”

6

Stability Anti-Patterns
Scaling effects

SLA Inversion

Attacks of
self denial

Bl k d

Users
leads to

exacerbates
counters

Decoupling
middleware

reduces
impact

counters

mitigates

Stability Anti-Patterns and Patterns

Blocked
threads

Chain
reaction Integration

points

Slow CascadingUnbalanced

found near

leads to

leads to

leads to

mutual
aggravation

Bulkheads

counters

Steady state

results from violating

avoids

Test harness
Detects

problems

counters

11
© CAST 2008

Slow
responses

Cascading
failures

Unbounded
result sets

Unbalanced
capacities

Michael Nygard (2007). Release It!

leads to

leads to

Handshaking

Fail fast

counters

Timeouts

Circuit
breaker

counters

can avoid works with

counters
counters

prevents

Application quality also measures
how well the individual

Application Quality

Application Quality vs. Code Quality

components work together to make
up the overall business system

Code quality is the measure of
individual components for

li ith t d d

Code Quality

12
© CAST 2008

Good code quality Good code quality ≠≠ Good application qualityGood application quality

compliance with standards
and best practices in the

context of a specific language

7

Supplementing Mature Processes

Application Quality Engineering supplementssupplements
CMMI to unlock even more business value from
applications

CMMI focus CMMI focus – process improvement – Six Sigma
AQE focus AQE focus – product improvement – Design for 6σ

INNOVATE Goal-driven improvements

13
© CAST 2008

QUANTIZE

STANDARDIZE

STABILIZE

p

Statistical quality mgt.

Tailorable quality processes

Project quality practices

The 4th Wave in Software Engineering
What: Architecture, Quality characteristics, Reuse
When: 2005
Why: Ensure software is constructed to standards

that meet the lifetime demands placed on itProductProduct

44

What: Design methods, CASE tools
When: 1980-1990
Wh Gi d l b l d id f i

22

What: CMM, ITIL, PMBOK, Agile
When: 1990-2005
Why: Provide a more disciplined environment for

professional work incorporating best practicesProcessProcess

33

14
© CAST 2008

What: 3rd & 4th generation languages, structured programming
When: 1965-1980
Why: Give developers greater power for expressing their

programsLanguagesLanguages

11

Why: Give developers better tools and aids for constructing
software systemsMethodsMethods

8

How Do We Get to Dependable Software

National Research CouncilNational Research Council
Software for Dependable SystemsSoftware for Dependable Systems

“As higher levels of assurance are
demanded…testing cannot deliver
the level of confidence required at
a reasonable cost.”

“The cost of preventing all failures
will usually be prohibitively
expensive, so a dependable system

15
© CAST 2008

“The correctness of the code
is rarely the weakest link.”

will not offer uniform levels of
confidence across all functions.”

Jackson, D. (2009). Communications of the ACM, 52 (4)

Presenting Dependability Cases

Provide direct evidence that a system
satisfies its dependability requirementsObjectiveObjective

Dependability
goal

Dependability
claims

Dependability
properties

stated as about

argues provides

16
© CAST 2008

Dependability
case

Dependability
evidence

comprises• Auditable
• Complete
• Sound

• Tests
• Proofs
• Analyses

9

Structural Analysis of Software Quality

Performance Performance ComplexityComplexity

Class complexity (Inh. depth)
Class complexity (Inh. width)
Method complexity (Param.)
Method complexity (control flow)

O
v

Quality Metrics Quality Quality
IndicatorsIndicators

Health Health
FactorsFactors

Application Application
Internal Internal
QualityQuality

RobustnessRobustness
ArchitectureArchitecture

Package naming
Class naming

SecuritySecurity

ProgrammingProgramming
PracticesPractices

File conformity
Dead code

Controled data access
Structuredness

Modularity

Encapsulation conformity
Empty code

Inheritance

Immediate Impact

ver 800+ architectural &
 languag

App. Internal Quality

SQL Complexity Distribution
Artifacts with recursive calls

Coupling distribution

17
© CAST 2008

TransferabilityTransferability

ChangeabilityChangeability SizeSize

Naming Naming
ConventionsConventions

DocumentationDocumentation

g
Interface naming
Method naming
Attribute naming
Constant naming
Package comment
Class comment
Method comment
Package size
Class size (methods)
Class size (attributes)
Interface size

On-Going Impact

ge-specific code checks

Method size

Allianz Austria’s Maintainability Results

Business Need: Reduce the application management
costs of Allianz Austria’s insurance management system – 300
RFCs and 700,000 lines of code modified every year – used to
serve 10 million customers and process 8 million claims a year.

Benefits
• Maintainability stabilized despite a 40%

increase in code volume over 4 years

Solution
Enforce Allianz specific application quality rules to stabilize maintainability score
Automatically assess and monitor the quality and maintainability of applications
Provide standard enforcement reports to help AD teams remediate problems faster
Integrate application quality processes into Allianz’ Quality Management System

10

12

/ K
LO

C

56% d ti i

18
© CAST 2008

increase in code volume over 4 years
• Improved delivery on new functionality

by 230% while reducing application
maintenance costs by 20% over 3 years

• 56% reduction in defects in four years

0

2

4

6

8

10

D
ef

ec
ts

2002 2003 2004 2005 2006

56% reduction in
defects in 4 years

10

Using Measures to Control Quality

19
© CAST 2008

Application
Objective

Measures should be managed as distributions

Beware arbitrary thresholds⎯derive them statistically

Using Measures Diagnostically

it
y

ol
 F

lo
w

 C
om

pl
ex

i

Departures from
statistically derived
relationships among
the attributes of a
component indicate
the possibility of
code pathologies

20
© CAST 2008

C
on

tr
o

Size (LOC, FP, E, etc.)

code pathologies

11

Business Value & Application Quality

TRANSFERABILITYTRANSFERABILITY
allows new teams to quickly allows new teams to quickly

begin working with an applicationbegin working with an application

Improve software readability

Reduce vendor lock-in

Reduce cost of ownership

Maximize standards compliance

Minimize business Minimize business
risksrisks

Business
Value

Application
Health Factors

Tactical Objectives

CHANGEABILITYCHANGEABILITY
makes an application easier and makes an application easier and

quicker to modifyquicker to modify

ROBUSTNESSROBUSTNESS
improves application stability & improves application stability &
reduces injecting new defectsreduces injecting new defects

Reduce learning curves

Ease team handoffs

Reduce application rework

Maximize application availability
Minimize liquidated damages

Minimize degraded service

Reduce injected defects

Reduce application mistakes

Maximize business Maximize business
agilityagility

Minimize IT costsMinimize IT costs

21
© CAST 2008

PERFORMANCEPERFORMANCE
Reduces degraded response Reduces degraded response

times and increases scalabilitytimes and increases scalability

SECURITYSECURITY
affects an application’s ability to affects an application’s ability to
prevent unauthorized intrusionsprevent unauthorized intrusions

Optimize work Optimize work
productivityproductivity

Reduce modification effort

Maximize Maximize
customer loyaltycustomer loyalty

Accelerate new function delivery

Maximize application scalability

Maximize speed of response

Maximize information retrieval

Maximize information protection

Maximize customer confidence

Minimize unwanted breaches

Consortium for IT Software Quality

CISQ
IT i ti O t A i E tIT organizations, Outsourcers, Agencies, Experts

IT & AD
Executives

Technical
experts

22
© CAST 2008

Define industry issues
Drive standards adoption
Buildappraiser program

Create quality standard
Developer certification
Integrate with standards

